
ABSTRACT
Radiology has been a cornerstone for the analysis of 
spinal alignment for over a century. Although there has 
been a movement within chiropractic to reduce the use 
of x-ray, this runs counter to both traditional and current 
biomechanical evidence-based subluxation models. 
We present evidence supporting the scientific basis of 6 
contemporary subluxation types that currently underpin 
the basis for routine radiographic examination for 
biomechanical data related to the diagnosis and treatment 
of patients in modern chiropractic practice. We also 
discuss how these 6 types of subluxation satisfy Nelson’s 
criteria and achieve valid subluxation theory status.  
(J Contemporary Chiropr 2018;1:9-19)
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INTRODUCTION
Radiology has been a cornerstone for the analysis of spinal 
alignment for over a century (1,2). Despite this tradition, 
there has been increasing pressure from within the 
chiropractic profession against routine use of radiology 
(i.e. ‘red flag’ only x-ray guidelines) (3-6). Recently, the 
American Chiropractic Association joined this x-ray image 
reduction campaign with its endorsement of the American 
Board of Internal Medicine's ‘Choosing Wisely’ initiative 
and released the statement: ‘Five things physicians and 
patients should question (7).’ Items 1 and 2 include 
restraint from spinal imaging.

The notion of restricting spinal imaging may not only 
be unsafe for the patient (8,9), it may also limit the 
effectiveness of care offered (10), and is not consistent 
with the views of large factions of the profession that 
routinely x-ray their patients (11-13). One of the driving 
goals behind the efforts of minimizing the public’s 

exposures to ionizing radiation in the form of x-rays is 
the presumed and feared development of future cancers. 
Alternatively, a foremost goal behind limiting radiography 
within chiropractic is the presumed lack of biomechanical 
information to be gained from spinal imaging (i.e. non-
existence of ‘subluxation’).

The purpose of this commentary is to present a brief 
summary of evidence supporting the scientific basis of 6 
contemporary subluxation types that currently underpin 
the basis for routine radiographic examination for 
biomechanical data related to the diagnosis and treatment 
of patients in modern chiropractic practice. We also 
discuss how these 6 types of subluxation satisfy Nelson’s  
(14) criteria and achieve valid subluxation theory status.

DISCUSSION
The New Biomechanics: Rotations and Translations of 
Human Posture
Biomechanics is the study of mechanical laws relating 
to the structure and dynamics of the body, including 
the static analysis of spinal structure on x-ray. Although 
traditionally, the ‘chiropractic subluxation’ was thought 
to be a single vertebra out of alignment (15) and was 
described by traditional ‘listings’ as measured from 
radiographic analysis (i.e. Gonstead listings such as ‘PRS’ 
– Figure 1) (16), Harrison (17) would later point out that 
these traditional listings were mere partial explanations 
of a vertebra as described from a full analysis of 12 simple 
motions (positions) in 6 degrees of freedom (Figure 1).

As chiropractic evolved into the era of scientific investigation 
after the 1970s, the few studies that have evaluated pre-
post adjustment changes failed to demonstrate significant 
radiographic changes or re-positioning of the ‘subluxated 
vertebra.’ (i.e. Plaugher (18)), Harrison (19), Hurwitz  (20), 
Shilton (21)).
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Figure 1. Traditional listing systems (i.e. Top: ‘PRS’ listing) are simplistic 
representations of the description of a vertebra in its 3-dimensional position 
relative to the vertebra below as described in modern engineering terms as 
rotations about, and translations along the x, y, and z-axes on a Cartesian 
coordinate system (Courtesy CBP seminars).

Because of this apparent lack of evidence, a proportion of 
the profession (i.e. demanding evidence-based science) 
adopted the concept of the ‘manipulable lesion’ (21) (and 
many other terms (22)) as replacement of traditional 
‘bone out of place’ aspects of subluxation terminology. As 
a result, the majority of chiropractic researchers pursued 
avenues in many areas; all but abandoning the long quest 
to identify the chiropractic subluxation).

During the mid 1980s to mid 2000s, Harrison’s group 
achieved what the chiropractic profession long sought 
after – a precise, reliably measured, and validated normal 
and ‘subluxated’ human spinal model (16,23-25). 
Applying Panjabi’s rotations and translations descriptions 
of 3-dimensional movement about a Cartesian coordinate 
system (26), Harrison first described this in relation not to 
a joint, but to the main body segments of human posture 
(i.e. head, thorax, pelvis) (16,23-25). With the description of 
ideal or physiologic posture (no rotations; no translations) 
comes with it, the non-subluxated posture and therefore, 
also non-ideal/non-physiologic postures represent a type 
of ‘subluxation,’ (i.e. specific rotations and/or translations 
of the head, thorax, pelvis). Although presented in 1996 
(16) (the seminal and only indexed chiropractic journal 
at the time) it was not widely recognized (i.e. did not 

make a significant impact), likely due to its mathematical 
basis. Despite this, it remains the key biomechanical 
discovery essential for the mathematical description of the 
fundamentals of posture and ‘subluxation.’

Figure 2. Rotations and translations of the head, thorax, and pelvis about the x, 

y, z-axis Cartesian coordinate system (Courtesy CBP seminars).
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The Normal Human Spine
Although traditionally debated within chiropractic, there 
absolutely must be an ideal configuration of the human 
spine as based on evolutionary considerations (lumbar 
lordosis essential for bipedal gait (28)), anatomical 
considerations (i.e. wedging of discs creating cervical/
lumbar lordosis (29); wedging of vertebra creating 
thoracic/sacral kyphosis (29); orientation of facet joints 
(29); sagittal alignment determining spinal coupling 
(30,31); sagittal balance (32-34)), and biomechanical 
considerations (i.e. spinal load-bearing capabilities 
(29,35,36); injury mechanisms (29,37-41); osteoarthritis 
development (28,42-44)). A general overview of the 
biomedical literature supports a normal human spine; 
it is the precise orientation of the spine, however, that 
remains debated (i.e. precise shape of spinal regions with 
associated average/ideal normative data).

Although many have attempted to model the shape of the 
normal human spine, few have done so as comprehensively 
and systematically as the Harrison group (45-52). In a 
series of papers, elliptical shape modeling of the path 
of the posterior longitudinal ligament was performed 
on radiograph samples of asymptomatic subjects. The 
modeling would determine a best-fit geometric spinal 
shape by fitting various ellipses of altered minor-to-
major axes ratios to the digitized posterior vertebral body 
corners of the spinal regions (i.e. cervical (45-47), thoracic 
(48,49), lumbar (50-52)). 

The Harrison normal spine model (Figure 3) features a 
circular cervical lordosis, an elliptical thoracic kyphosis 
(more curvature cephalad), and an elliptical lumbar 
lordosis (more curvature caudad). Consequently, features 
of the normal human spine revealed that the opposite 
thoracic and lumbar curves meet together at the thoraco-
lumbar junction being essentially straight; the upper, 
deeper curve of the thoracic spine reflects oppositely at 
the cervico-thoracic junction (between T1 and T2) and 
continues into the cervical lordosis; the lower lumbar 
spine increases its lordotic alignment having two-thirds of 
its curve between L4-S1 as it meets the forward positioned 
sacral base. The spine is modeled as vertical in the antero-
posterior view. Spine alignment is easily measured and 
quantified by radiography (53-57) (Figure 3).

Validation of the Harrison model has been achieved in 
several ways:

1. By analyzing alignment data of normals (45-52);

2. By comparing normal samples to symptomatic 
samples (45,58);

3. By comparing normal samples to a theoretical ideal 
model (45,46,49,51);

4. By statistically differentiating normals from pain 
groups based on alignment data (48,52);

5. By demonstrating paralleled alignment improvements 
with pain and disability, versus no change in untreated 
control groups in pre-post trials (19,59-63);

6. By demonstrating in randomized trials that only 
patient groups achieving lordosis improvement 
(lumbar or cervical) achieve long-term improvements 
in outcome measures versus comparative treatment 
groups not getting spine alignment improvement 
who regress long-term after achieving only short-
term, temporary symptom relief (64-71).

Figure 3. Top: The Harrison normal spine model: The path of the posterior 
longitudinal ligament. Bottom: Harrison posterior tangent method used to 
quantify subluxation patterns (Courtesy CBP seminars).  
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It should be noted that the Harrison normal spinal model 
(Figure 3) serves as the baseline for patient comparison. 
Specific patient comparisons to this model, however 
must include patient-specific measurements related to 
both pelvic morphology (72) as well as thoracic inlet (73) 
parameters as these may dictate a modification to this 
spinal model for a given patient. Although beyond the 
scope of this paper, pelvic morphology and thoracic inlet 
are important factors to be considered in the application of 
this model to patient care and are routinely considered by 
chiropractors practicing Chiropractic BioPhysics technique 
and is included in the PostureRay x-ray analysis software 
system (PostureCo Inc., Trinity FL, USA). 

The 6 Contemporary Subluxation Types
There are 6 different types of spinal subluxations from a 
biomechanical displacement away from normal perspective 
(1,17,74):

Coupled spinal motions: Rotations and translations of the 
head, thorax, or pelvis (main motions) will display spinal 
coupling patterns that deviate in predictable ways about 
the normal static spinal position (75-79). These patterns of 
regional vertebral misalignments may occur with dynamic 
movement; however, they are specifically referred to here 
as diagnosed in neutral resting stance (1,17,74).

Snap-through buckling: Primarily associated within 
the sagittal plane, ‘snap-through’ is a spinal buckling 
phenomenon that occurs when there is sudden change 
of an equilibrium configuration (i.e. a lordosis buckling 
into a kyphosis) (37-41,80-91). Different biomechanical 
equilibrium states can be categorized as different buckled 
modes, such as first order (S-shaped), second order (triple 
curve), etc. These typically occur during sudden loading 
impacts (i.e. falls, head impacts), overloading events 
(i.e. lifting), or inertial loading events (i.e. motor vehicle 
collisions).

Euler buckling: Similar to snap-through, ‘Euler’ buckling 
occurs by similar loading events to the spine in the frontal/
coronal plane (92-94). Euler buckling most often occurs 
in the lower spinal regions (i.e. cervico-thoracic, thoraco-
lumbar, lumbo-pelvic junctions) and is readily visualized 
on AP/PA and lateral radiographic views (93,94). Euler 
buckling creates complex 3-D displacements of the 
affected segments where lateral flexion, axial rotation, and 
lateral shear is seen in frontal views and hyper-flexion/
extension and anterior/posterior shear may occur in the 
sagittal plane. Goel et al. has demonstrated that this is the 
type of buckling that likely causes postero-lateral lumbar 
disc herniation after applying a flexion-compression axial 
load to the lumbar spine simulating the effect of a sudden 
load shift during heavy lifting (93).

Slow-loading buckling: Scoliosis is a type of ‘slow-loading’ 
buckling (76,95). Not associated with a sudden impact or 

rapid loading, this spinal deviation develops over time with 
sustained and gradual buckling occurring continuously 
as its worsening displacement contributes to further 
buckling. Obviously there are genetic, neurologic, and 
growth components triggering the onset and progression 
of scoliosis; these are beyond the scope of this article.

Segmental instability: Whether static or dynamic, a 
segmental instability is a segment that is at or beyond the 
limit of range of motion of the functional spinal unit (96-
104). These are associated with ligament damage.

Segmental subluxation: A segmental subluxation is a 
segmental displacement of a vertebra relative to the inferior 
vertebra (occurring from C1-S1), and described in terms 
of Rx, Ry, Rz, Tx, Ty, Tz. (105-107). This represents the 
traditional ‘subluxation’ where the focus to one vertebra 
malposition may occur from a coupled spinal pattern 
resulting from a main postural motion, a type of buckling, 
or a segmental instability. This probably represents the 
majority of traditional ‘segmental subluxations’ arguably 
a case of ‘missing the forest for the trees.’ That being said, 
there may be occasions where segmental subluxations 
occur unrelated to any of the subluxation types previously 
mentioned, such as for a C1 atlas subluxation (108,109).

Nelson’s Criteria for a Valid Subluxation Theory
In attempts to clarify whether the subluxation phenomenon 
is a real and valid entity, Craig Nelson presented a set of 
6 criteria necessary to evaluate a subluxation theory; in 
his commentary, he states its purpose was to “attempt to 
bring some order and reason to the debate and to suggest 
a means of resolving the issue (14).” We present these 6 
criteria and briefly discuss how each are satisfied with the 
presented types of subluxation:

1. It should bear some resemblance to its historical 
antecedents: Palmer’s traditional ‘bone out of place’ 
ideology is analogous to an individual vertebrae 
placement within a regional spinal displacement 
from normal as occurs in the various buckling, 
spinal coupling associated with postural rotations 
and translations, or ligament damage subluxation 
scenarios.

2. It should be testable: These ‘new’ types of subluxations 
are testable as three-dimensional posture and two-
dimensional spine alignment data are nowadays 
very easily attained and quantified using reliable and 
repeatable measurement methods from radiography 
and photography or other well-studied methods 
(53-57). Further, as discussed by Harrison (17), 
traditional listings (i.e. PRS) were not amenable to 
study, however, contemporary descriptions using 
rotations measured in degrees and translations 
measured in millimeters are easily studied.
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3. It should be consistent with current basic scientific 
precepts and principles: Posture and coupled spinal 
motion patterns, spinal buckling from head impacts, 
inertial effects, scoliosis, and hyperkyphosis, as well 
as sub-catastrophic ligament injury spinal coupling 
behaviors are just some of the scientific inquiry that 
has born certain current biomechanical principles 
and precepts.

4. It should reflect current practice and educational 
standards: Current practice is varied; however, 
much of the concepts of these new subluxation 
types are well known. Scoliosis, for example, is 
understood to where it is routine to radiograph 
for the monitoring of curve development and 
measurement (i.e. Cobb angle) (110). Ligament 
instability is a routine screening procedure in Davis’ 
series radiographic assessment of motor vehicle 
collision patients. All chiropractic students learn 
about some aspects of snap-through buckling in 
terms of sagittal spine variant positions i.e. cervical 
kyphosis, lumbar kyphosis, s-curves, etc. Other 
concepts related to types of subluxation such as 
translations and rotations of posture are taught 
in a number of colleges (a number of chiropractic 
programs include CBP technique and its associated 
contemporary spinal biomechanics). It should be 
mentioned that although some of the concepts 
surrounding the new subluxation types are not fully 
integrated into current practice and education, this 
is not an inherent problem with the definitions of 
subluxations as presented (1); it is more a problem of 
the lack of dissemination of relevant biomechanical 

information critical for contemporary knowledge 
related to the spine and its behavior.

5. It should be clinically meaningful: There is vast 
evidence of the subluxation types described as 
having implications for spinal pathology (i.e. 
osteoarthritis) and health consequences (i.e. pain 
symptomatology; specific disease states). All spinal 
displacements from ideal/normal are automatically 
subjected to both Wolff ’s Law (bone remodels to 
stress) (111-114) and Davis’ Law (soft tissue remodels 
to stress) (114,115), and because these are laws and 
are a statement of fact, this alone provides enough 
‘clinical meaningfulness’ to satisfy this attribute.

6. It should present a distinct and unique point of view: 
The view of rotations and translations of posture are 
unique rigid body movements taught as possibilities 
in linear algebra. Spinal buckling phenomena are 
from mechanical engineering. Both these concepts 
present unique and distinct points of view.

As shown, the 6 contemporary subluxation types all 
satisfy Nelson’s criteria for valid subluxation theory (The 
authors each independently evaluated whether each 
subluxation type could satisfy each of the 6 criteria; it was 
unanimous that each satisfied each criterion - Table 1). 
Future research should be directed at the biomechanical 
scientific investigation of these subluxation types and the 
implications on health and disease.

As specifically stated by Lawrence: “Attempts to define the 
term (subluxation) are regularly made, only to fall afoul of 
political considerations rather than scientific ones (116);” 
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Table 1: The 6 contemporary subluxation types each satisfy Nelson’s criteria and serve as valid subluxation theories 
amenable to scientific inquiry.

Nelsons Criteria: Posture & Spine 
Coupling

Lateral Snap-
through Buckling

AP Euler Buckling Scoliosis Buckling Ligament 
Instability

Segmental 
Subluxation

Resembles 
historical concepts

Yes Yes Yes Yes Yes Yes

Testable Yes Yes Yes Yes Yes Yes

Consistent in 
current science

Yes Yes Yes Yes Yes Yes

Reflects practice & 
education

Yes Yes Yes Yes Yes Yes

Clinically 
meaningful

Yes Yes Yes Yes Yes Yes

Unique/ distinct Yes Yes Yes Yes Yes Yes



to this we concur. Further, because any ‘subluxation’ has 
a biomechanical entity, so too will its description and 
understanding; thus we also concur with Harrison et al.: 
“Because pathological changes are caused by abnormal 
spinal loads and functional and/or structural changes 
are altered positions (statics and dynamics), subluxations 
must be described with rotations and translations in 3D 
as per mechanical engineering principles and not political 
agreement by those without education in mechanical 
engineering (74).”

CONCLUSION
The persistent debate about the validity of spinal 
subluxation needs to end. In this day and age the 
chiropractic profession needs to be beyond irrelevant 
debate and acknowledge that the lack of biomechanical, 
engineering and mathematical education is what has 
stumped the universal acceptance of contemporary 
subluxation concepts – not its inexistence. As presented, 
there certainly exists ‘vertebral subluxation,’ albeit various 
types; and all of these subluxation types satisfies criteria 
required for valid subluxation theory and scientific 
inquiry. These validated subluxation models should be 
further tested for their impact on patient conditions, for 
the most appropriate corrective interventions, and for 
their correlations to improved patient outcomes in clinical 
investigations.
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